Skip to main content

Java Language Client Options for ClickHouse

There are three options for connecting to ClickHouse using Java:

Java Client

Provides the most flexible and performant way to integrate your app with ClickHouse.

Environment requirements

Compatibility with ClickHouse

Client versionClickHouse
0.4.620.7+

Installation

<dependency>
<groupId>com.clickhouse</groupId>
<!-- or clickhouse-grpc-client if you prefer gRPC -->
<artifactId>clickhouse-http-client</artifactId>
<version>0.4.6</version>
</dependency>

Supported data types

FormatSupportComment
AggregatedFunction⚠️ does not support SELECT * FROM table ...
Array(*)
Bool
Date*
DateTime*
Decimal*SET output_format_decimal_trailing_zeros=1 in 21.9+ for consistency
Enum*can be treated as both string and integer
Geo TypesPoint, Ring, Polygon, and MultiPolygon
Int*, UInt*UInt64 is mapped to long
IPv*
Map(*)
Nested(*)
Object('JSON')
SimpleAggregateFunction
*String
Tuple(*)
UUID

Driver API

Connect to ClickHouse

URL Syntax: protocol://host[:port][/database][?param[=value][&param[=value]][#tag[,tag]], for example:

  • http://localhost:8443?ssl=true&sslmode=NONE
  • http://(https://explorer@play.clickhouse.com:443
  • tcp://localhost?!auto_discovery#experimental),(grpc://localhost#experimental)?failover=3#test
ClickHouseNodes servers = ClickHouseNodes.of(
"jdbc:ch:http://server1.domain,server2.domain,server3.domain/my_db"
+ "?load_balancing_policy=random&health_check_interval=5000&failover=2");

Query

ClickHouseResponse response = client.connect(endpoint) // or client.connect(endpoints)
// you'll have to parse response manually if using a different format
.format(ClickHouseFormat.RowBinaryWithNamesAndTypes)
.query("select * from numbers(:limit)")
.params(1000).executeAndWait()) {
ClickHouseResponseSummary summary = response.getSummary();
long totalRows = summary.getTotalRowsToRead();

Streaming Query

ClickHouseResponse response = client.connect(endpoint) // or client.connect(endpoints)
// you'll have to parse response manually if using a different format
.format(ClickHouseFormat.RowBinaryWithNamesAndTypes)
.query("select * from numbers(:limit)")
.params(1000).executeAndWait()) {
for (ClickHouseRecord r : response.records()) {
int num = r.getValue(0).asInteger();
// type conversion
String str = r.getValue(0).asString();
LocalDate date = r.getValue(0).asDate();
}

Insert

try (ClickHouseClient client = ClickHouseClient.newInstance(ClickHouseProtocol.HTTP)) {
ClickHouseRequest<?> request = client.connect(servers).format(ClickHouseFormat.RowBinaryWithNamesAndTypes);
// load data into a table and wait until it's completed
request.write()
.query("insert into my_table select c2, c3 from input('c1 UInt8, c2 String, c3 Int32')")
.data(myInputStream).execute().thenAccept(response -> {
response.close();
});

Multiple queries

Execute multiple queries in a worker thread one after another within same session:

CompletableFuture<List<ClickHouseResponseSummary>> future = ClickHouseClient.send(servers.get(),
"create database if not exists my_base",
"use my_base",
"create table if not exists test_table(s String) engine=Memory",
"insert into test_table values('1')('2')('3')",
"select * from test_table limit 1",
"truncate table test_table",
"drop table if exists test_table");

// block current thread until queries completed, and then retrieve summaries
List<ClickHouseResponseSummary> results = future.get();

JDBC Driver

clickhouse-jdbc implements the standard JDBC interface. Being built on top of clickhouse-client, it provides additional features like custom type mapping, transaction support, and standard synchronous UPDATE and DELETE statements, etc., so that it can be easily used with legacy applications and tools.

clickhouse-jdbc API is synchronous, and generally, it has more overheads(e.g., SQL parsing and type mapping/conversion, etc.). Consider clickhouse-client when performance is critical or if you prefer a more direct way to access ClickHouse.

Environment requirements

Compatibility with ClickHouse

Client versionClickHouse
0.4.620.7+

Installation

<dependency>
<groupId>com.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<version>0.4.6</version>
<!-- use uber jar with all dependencies included, change classifier to http for smaller jar -->
<classifier>all</classifier>
</dependency>

Configuration

Driver Class: com.clickhouse.jdbc.ClickHouseDriver

URL Syntax: jdbc:(ch|clickhouse)[:<protocol>]://endpoint1[,endpoint2,...][/<database>][?param1=value1&param2=value2][#tag1,tag2,...], for example:

  • jdbc:ch://localhost is same as jdbc:clickhouse:http://localhost:8123
  • jdbc:ch:https://localhost is same as jdbc:clickhouse:http://localhost:8443?ssl=true&sslmode=STRICT
  • jdbc:ch:grpc://localhost is same as jdbc:clickhouse:grpc://localhost:9100

Connection Properties:

PropertyDefaultDescription
continueBatchOnErrorfalseWhether to continue batch processing when error occurred
createDatabaseIfNotExistfalseWhether to create database if it does not exist
custom_http_headerscomma separated custom http headers, for example: User-Agent=client1,X-Gateway-Id=123
custom_http_paramscomma separated custom http query parameters, for example: extremes=0,max_result_rows=100
nullAsDefault00 - treat null value as is and throw exception when inserting null into non-nullable column; 1 - treat null value as is and disable null-check for inserting; 2 - replace null to default value of corresponding data type for both query and insert
jdbcCompliancetrueWhether to support standard synchronous UPDATE/DELETE and fake transaction
typeMappingsCustomize mapping between ClickHouse data type and Java class, which will affect result of both getColumnType() and getObject(Class<?>). For example: UInt128=java.lang.String,UInt256=java.lang.String
wrapperObjectfalseWhether getObject() should return java.sql.Array / java.sql.Struct for Array / Tuple.

Note: please refer to JDBC specific configuration for more.

Supported data types

FormatSupportComment
AggregatedFunction⚠️ does not support SELECT * FROM table ...
Array(*)
Bool
Date*
DateTime*
Decimal*SET output_format_decimal_trailing_zeros=1 in 21.9+ for consistency
Enum*can be treated as both string and integer
Geo TypesPoint, Ring, Polygon, and MultiPolygon
Int*, UInt*UInt64 is mapped to long
IPv*
Map(*)
Nested(*)
Object('JSON')
SimpleAggregateFunction
*String
Tuple(*)
UUID

Driver API

Connect to ClickHouse

String url = "jdbc:ch://my-server/system"; // use http protocol and port 8123 by default

Properties properties = new Properties();

ClickHouseDataSource dataSource = new ClickHouseDataSource(url, properties);
try (Connection conn = dataSource.getConnection("default", "password");
Statement stmt = conn.createStatement()) {
}

Query


try (Connection conn = dataSource.getConnection(...);
Statement stmt = conn.createStatement()) {
ResultSet rs = stmt.executeQuery("select * from numbers(50000)");
while(rs.next()) {
// ...
}
}

Insert

note
  • Use PreparedStatement instead of Statement
  • Use input function whenever possible
With input table function

Recommended way with the best performance

try (PreparedStatement ps = conn.prepareStatement(
"insert into mytable select col1, col2 from input('col1 String, col2 DateTime64(3), col3 Int32')")) {
// the column definition will be parsed so the driver knows there are 3 parameters: col1, col2 and col3
ps.setString(1, "test"); // col1
ps.setObject(2, LocalDateTime.now()); // col2, setTimestamp is slow and not recommended
ps.setInt(3, 123); // col3
ps.addBatch(); // parameters will be write into buffered stream immediately in binary format
...
ps.executeBatch(); // stream everything on-hand into ClickHouse
}
Insert

It's easier to use but slower performance compare to input function

try (PreparedStatement ps = conn.prepareStatement("insert into mytable(* except (description))")) {
// the driver will issue query "select * except (description) from mytable where 0" for type inferring
// since description column is excluded, we know there are only two parameters: col1 and col2
ps.setString(1, "test"); // id
ps.setObject(2, LocalDateTime.now()); // timestamp
ps.addBatch(); // parameters will be write into buffered stream immediately in binary format
...
ps.executeBatch(); // stream everything on-hand into ClickHouse
}
Insert with placeholders

Not recommended as it's based on a large SQL

// Note: "insert into mytable values(?,?,?)" is treated as "insert into mytable"
try (PreparedStatement ps = conn.prepareStatement("insert into mytable values(trim(?),?,?)")) {
ps.setString(1, "test"); // id
ps.setObject(2, LocalDateTime.now()); // timestamp
ps.setString(3, null); // description
ps.addBatch(); // append parameters to the query
...
ps.executeBatch(); // issue the composed query: insert into mytable values(...)(...)...(...)
}

Advanced API

Connect to ClickHouse with SSL

To establish a secure JDBC connection to ClickHouse using SSL, you'll need to configure your JDBC properties to include the SSL parameters. This typically involves specifying the SSL properties such as sslmode and sslrootcert in your JDBC URL/Properties object.

SSL Properties

NameDefault ValueOptional ValuesDescription
sslfalsetrue, falseWhether to enable SSL/TLS for the connection.
sslmodeSTRICTverify, noneSSL mode.
sslrootcertPath to SSL/TLS root certificates.
sslcertPath to SSL/TLS certificate.
sslkeyRSA key in PKCS#8 format.

These properties ensure that your Java application communicates with the ClickHouse server over an encrypted connection, enhancing data security during transmission.

  String url = "jdbc:ch://your-server:8443/system";

Properties properties = new Properties();
properties.setProperty("ssl", "true");
properties.setProperty("sslmode", "strict"); // NONE to trust all servers; STRICT for trusted only
properties.setProperty("sslrootcert", "/mine.crt");
try (Connection con = DriverManager
.getConnection(url, properties)) {

try (PreparedStatement stmt = con.prepareStatement(

// place your code here

}
}

For more detailed guidance on SSL configuration, please review the Configuring SSL-TLS section.

Handling DateTime and time zones

Please to use java.time.LocalDateTime or java.time.OffsetDateTime instead of java.sql.Timestamp, and java.time.LocalDate instead of java.sql.Date.

try (PreparedStatement ps = conn.prepareStatement("select date_time from mytable where date_time > ?")) {
ps.setObject(2, LocalDateTime.now());
ResultSet rs = ps.executeQuery();
while(rs.next()) {
LocalDateTime dateTime = (LocalDateTime) rs.getObject(1);
}
...
}

Handling AggregateFunction

note

As of now, only groupBitmap is supported.

// batch insert using input function
try (ClickHouseConnection conn = newConnection(props);
Statement s = conn.createStatement();
PreparedStatement stmt = conn.prepareStatement(
"insert into test_batch_input select id, name, value from input('id Int32, name Nullable(String), desc Nullable(String), value AggregateFunction(groupBitmap, UInt32)')")) {
s.execute("drop table if exists test_batch_input;"
+ "create table test_batch_input(id Int32, name Nullable(String), value AggregateFunction(groupBitmap, UInt32))engine=Memory");
Object[][] objs = new Object[][] {
new Object[] { 1, "a", "aaaaa", ClickHouseBitmap.wrap(1, 2, 3, 4, 5) },
new Object[] { 2, "b", null, ClickHouseBitmap.wrap(6, 7, 8, 9, 10) },
new Object[] { 3, null, "33333", ClickHouseBitmap.wrap(11, 12, 13) }
};
for (Object[] v : objs) {
stmt.setInt(1, (int) v[0]);
stmt.setString(2, (String) v[1]);
stmt.setString(3, (String) v[2]);
stmt.setObject(4, v[3]);
stmt.addBatch();
}
int[] results = stmt.executeBatch();
...
}

// use bitmap as query parameter
try (PreparedStatement stmt = conn.prepareStatement(
"SELECT bitmapContains(my_bitmap, toUInt32(1)) as v1, bitmapContains(my_bitmap, toUInt32(2)) as v2 from {tt 'ext_table'}")) {
stmt.setObject(1, ClickHouseExternalTable.builder().name("ext_table")
.columns("my_bitmap AggregateFunction(groupBitmap,UInt32)").format(ClickHouseFormat.RowBinary)
.content(new ByteArrayInputStream(ClickHouseBitmap.wrap(1, 3, 5).toBytes()))
.asTempTable()
.build());
ResultSet rs = stmt.executeQuery();
Assert.assertTrue(rs.next());
Assert.assertEquals(rs.getInt(1), 1);
Assert.assertEquals(rs.getInt(2), 0);
Assert.assertFalse(rs.next());
}

R2DBC driver

R2DBC wrapper of async Java client for ClickHouse.

Environment requirements

Compatibility with ClickHouse

Client versionClickHouse
0.4.620.7+

Installation

<dependency>
<groupId>com.clickhouse</groupId>
<!-- change to clickhouse-r2dbc_0.9.1 for SPI 0.9.1.RELEASE -->
<artifactId>clickhouse-r2dbc</artifactId>
<version>0.4.6</version>
<!-- use uber jar with all dependencies included, change classifier to http or grpc for smaller jar -->
<classifier>all</classifier>
<exclusions>
<exclusion>
<groupId>*</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency>

Supported data types

FormatSupportComment
AggregatedFunction⚠️ does not support SELECT * FROM table ...
Array(*)
Bool
Date*
DateTime*
Decimal*SET output_format_decimal_trailing_zeros=1 in 21.9+ for consistency
Enum*can be treated as both string and integer
Geo TypesPoint, Ring, Polygon, and MultiPolygon
Int*, UInt*UInt64 is mapped to long
IPv*
Map(*)
Nested(*)
Object('JSON')
SimpleAggregateFunction
*String
Tuple(*)
UUID

Driver API

Connect to ClickHouse

ConnectionFactory connectionFactory = ConnectionFactories
.get("r2dbc:clickhouse:http://{username}:{password}@{host}:{port}/{database}");

Mono.from(connectionFactory.create())
.flatMapMany(connection -> connection

Query

connection
.createStatement("select domain, path, toDate(cdate) as d, count(1) as count from clickdb.clicks where domain = :domain group by domain, path, d")
.bind("domain", domain)
.execute())
.flatMap(result -> result
.map((row, rowMetadata) -> String.format("%s%s[%s]:%d", row.get("domain", String.class),
row.get("path", String.class),
row.get("d", LocalDate.class),
row.get("count", Long.class)))
)
.doOnNext(System.out::println)
.subscribe();

Insert

connection
.createStatement("insert into clickdb.clicks values (:domain, :path, :cdate, :count)")
.bind("domain", click.getDomain())
.bind("path", click.getPath())
.bind("cdate", LocalDateTime.now())
.bind("count", 1)
.execute();